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概要
公理的集合論において, 巨大基数とは基本の公理系 ZFC では存在が証明できない基数の総称
である. Holy-Schlicht は [1] の中で新たな巨大基数を定義するために非可算正則基数 κ > ω に
対して長さ α ∈ (0, κ+] のフィルターゲーム GHS

α (κ) を定義した. 本講演ではゲームの決定性に
関していくつかの未解決問題が解かれたことを発表する.

1 導入
無限の概念を得たことで豊かに発展した現代数学において, 公理的集合論は無限それ自体を興味の

対象とする分野と言える. 特に本講演で主に扱う巨大基数は, 可算無限が数学の世界を豊かなものに
したようにその存在が集合論の宇宙全体により良い性質をもたらすものとして活発な研究の対象に
なっている.

1.1 順序数, 基数
巨大基数の概念に触れるためにも, 公理的集合論の基本である二つの数概念である順序数と基数を

導入する. 既知の読者は飛ばしてよい. 以下で述べている命題の証明は [2] や [3] などを参照せよ.

集合 X,Y に対して X から Y への単射が存在するとき |X| ≤ |Y | と書き, 全単射が存在するとき
|X| = |Y | と書く. |X| ≤ |Y | だが X| = |Y | でないとき |X| < |Y | と書く. 集合はそれがどんな集
合と濃度が等しいかで分類することが可能である. 例えば有限集合はその要素の個数である自然数と
同じ分類, すなわち等濃であり, 可算無限集合は自然数全体の集合 N と同じ分類に分けられる. 一方
で実数全体の集合 R とは分類が異なることは Cantor の定理から導かれるよく知られた事実である.

公理的集合論においては, このように集合を濃度によって分類したときの各々の代表として基数とい
う数概念を導入し, 基数の性質を解き明かすことでその濃度を持つ集合の性質を解き明かす. 以下に
基数を定義する.

基数を定義するために, 順序数というまた新しい数概念を定義するのが望ましい. 順序数を使わな
い基数の定義方法もあるが, 順序数による定義が一般的であるし, 何より順序数を介することで非常
に整った形で基数を論じることができる.

順序数は自然数が有限集合や可算集合を数え上げるように, 無限を数え上げるときに使われる数概
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念と言える. 以下に集合論の基本の公理系 ZFCにおける順序数の正確な定義を述べておく. 集合 X

が推移的であるとは, y ∈ x ∈ X ならば y ∈ X を満たすことを言う. 集合 P に備わっている半順序
<P が整列順序 であるとは, 任意の空でない X ⊆ P が <P に関する最小限を持つことを言う.

1.1Definition. 集合 α が順序数であるとは, それが推移集合であって, α が二項関係 ∈ に関して整
列順序集合であることを言う.

順序数は α, β, γ などで表す.

例えば空集合 ∅ は順序数であって, 空集合の単集合 {∅} も順序数である. 一般に順序数 α に対し
て, α ∪ {α} も順序数である. これを α+ 1 で表す. この操作によって自然数 (とみなせる順序数)は
次のように構成されている:

0 = ∅, 1 = 0 ∪ {0}, 2 = 1 ∪ {1}, · · ·

構成の仕方から, 自然数全体の集合もまた順序数である. これを ω と呼ぶことにする. *1 ω は自然数
と違って α+ 1 の形をしていない. このような順序数のことを極限順序数と呼び, 逆に α+ 1 の形の
順序数を後続順序数と呼ぶ. 0 は極限順序数であり, 他の自然数は全て後続順序数である. ω は 0 で
ない極限順序数のうち最小のものである.

もちろん ω の後にも ω + 1, ω + 2 · · · と順序数が続く. ω ∪ {ω + n : n < ω} も順序数である. こ
れは ω を二つ並べた順序数だと思ってよい. これを ω+ ω または ω · 2 とも表す. これもまた同様の
順序数が続き, ω · 3, ω · 4, · · · と続く.

∪
n<ω ω · n もまた順序数である. この順序数は ω · ω または

ω2 と呼ぶ. ω を ω 個だけ並べたような形をしている.

図 1: 順序数の数直線
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基数の説明をする前に順序数の重要な性質を述べておく:

1.2Proposition. X を順序数の空でないクラスとするとき, その最小限が存在する: β ∈ X が最小
限であるとは, 全ての γ ∈ X について β = γ または β ∈ γ が成り立つことを言う.

前述したとおり順序数を用いて基数を定義し, それらの諸性質を見る. 基数は集合の濃度の分類を
代表する数であって, 全ての集合がどこかの濃度の区分には入るはずだから, どんな集合にもそれと
等濃な基数が存在すべきである. この初歩的だが重要な問題を早いところ解決して, 以下で基数を語
るときは順序数のことだけ気にすればいいことにしたい.

1.3Theorem. *2 全ての集合はある順序数と等濃である.

*1 ω の存在は無限公理から導かれる.
*2 余談だがこの定理は ZFCの定理であり, 選択公理がない状況では, P (ω) がどの順序数と等濃でないような場合も起こ
りうる. ここでは ZFCの話しかしないので気にしなくてよい.



基数は順序数のうち特別なものであり, 前述したとおり集合の濃度を表すものである. ここでは
ZFCにおける基数の定義を見る.

1.4Definition. 順序数 α が基数であるとは, それより小さい全ての順序数 β との間に全単射が存
在しないことを言う.

他の言い方をすれば, 順序数 α が基数であるとは

α = min{β : |β| = |α|}

を満たすことを言う.

自然数や N が可算濃度の代表であるという我々の直感は集合論において次のような形で実現され
ている:

1.5Proposition.

1. 全ての自然数は基数である.

2. ω は基数である.

これ以外の基数は存在するだろうか. 例えば Cantor の定理から |P (ω)| > |ω| であり, Theorem

1.3 と併せて非可算基数の存在がわかる. より一般に, 順序数を用いて次のような形で基数が無数に
存在することが示唆される:

1.6Theorem (Hartogs). 任意の集合 X に対して, それからの全射が存在しない順序数が存在
する.

特に任意の基数 κ に対してそれより濃度が大きい β が存在する. 順序数の整列性によってそのよ
うな順序数のうち最小のものを取ればそれが基数であることもわかる. そのような基数は κ の次の基
数と呼ばれ, κ+ で表される. 特に ω にも次の基数が存在し, それは ω1 と呼ばれる. 余談だが, 一般
に順序数 α に対して

1. ω0 = ω,

2. ωα+1 = (ωα)
+,

3. α が 0 でない極限順序数のとき, ωα = sup{ωβ : β < α}.

とするとき, これらは全て基数であって, かつ全ての無限基数はある α について ωα と等しい.

1.2 巨大基数
先に述べたように, 巨大基数は可算無限 ω のように, その存在が数学の世界にいい影響をもたらす

ものであり, 定義も ω の持つ性質を非可算無限に一般化したときに現れるようなものであることがあ
る. 特にここで挙げる三種の巨大基数である到達不能基数, 弱コンパクト基数, そして可測基数はその
代表である. 次の Proposition は自明といって差し支えないものだが, 話の導入としてあえて挙げて
おく. なお本章で未定義の演算が出てくるが, いずれも素朴なものと変わらない.



1.7Proposition.

(a) 自然数 n,m に対して nm もまた自然数である.

(b) X ⊆ ω が有限ならば, supX は自然数である.

これらの性質は言うなれば, 自然数のみを使ったどんな演算でも ω を得ることができないというこ
とである. 上の Proposition に現れた性質を一般化し, そのうえで巨大基数の定義に入ろう:

1.8Definition. κ を基数とする.

1. κ が強極限であるとは, α < κ ならば常に |P (α)| < κ が成り立つことを言う.

2. κ が正則であるとは, X ⊆ κ について |X| < κ ならば常に supX < κ を満たすことを言う.

例えば次の基数 κ+ は全て正則であり, 特に最小の非可算基数 ω1 は正則基数である. また α0 = ω

とし, 再帰的に αn+1 = |P (αn)| とするとき, κ = sup{αn : n < ω} は強極限である. そしてこれら
の性質を両方備えた非可算基数こそ, 最初の巨大基数である到達不能基数である:

1.9Definition. 基数 κ が到達不能であるとは, それが

1. κ > ω,

2. 強極限,

3. 正則

であることを言う.

これも同様にして到達不能基数 κ は, それより小さい順序数のみを使って κ を得ることができな
い. そういう意味では ω1 は巨大とは言えない. なぜなら ω1 はそれより小さい ω からその次の基数
を取るという演算で ω1 に到達できるからである.

巨大基数を定義する動機になる ω の性質は演算だけではなく, ω の上にある構造もその対象で
ある.

1.10Definition (フィルター). 集合 X ̸= ∅ と X 上の有限加法族 B について, F ⊆ B が B 上の
フィルターであるとは次を満たすことを言う:

(1) X ∈ F, ∅ /∈ F .

(2) A,B ∈ F ならば A ∩B ∈ F .

(3) A,B ∈ B について, A ∈ F かつ A ⊆ B ならば B ∈ F .

フィルター F が非自明であるとは, 加えて次を満たすことを言う:

4. x ∈ X ならば {x} /∈ F .

フィルター F が超フィルターであるとは, 上の (1)～(3) に加えてさらに次を満たすことを言う:

5. A ∈ B ならば A ∈ F または X \A ∈ F .



次の Theorem は超フィルターの存在に関する有名な Theorem である:

1.11Theorem. P (ω) 上に非自明な超フィルターが存在する. *3

フィルターの定義の (2) は, すなわち F が有限個の F の要素の共通部分を取る操作に閉じている
ということで, 有限個とは ω より小さい個数ということである. よって次のように巨大基数を定義
することができる. 集合族 A が < κ-完備であるとは, {Ai : i ∈ I} ⊆ A について |I| < κ ならば∩

i∈I Ai ∈ A を満たすことを言う.

1.12Definition (可測基数). κ > ω が可測基数であるとは, P (κ) 上に非自明な < κ-完備超フィル
ターが存在することを言う.

本講演では可測基数より下の巨大基数の階層に位置するもう一つの巨大基数も扱うので, それも以
下に定義しておく. 有限加法族 B が < κ-完備であるとき, これを κ-加法族と呼ぶ.

1.13Definition (弱コンパクト基数). κ > ω が弱コンパクト基数であるとは, 任意の κ 上の κ-加
法族 B について, |B| = κ ならば, その上に非自明な < κ-完備超フィルターが存在することを言う.

弱コンパクトという名称は, 弱コンパクト基数の一般的な定義がモデル理論におけるコンパクト性
定理を非可算基数に一般化したものであることに由来する.

これらは巨大基数である. 証明は省略する.

1.14Proposition.

1. 可測基数は弱コンパクトである.

2. 弱コンパクト基数は到達不能である.

2 フィルターゲーム
本章にてフィルターゲームを定義する. 簡単のために Holy らが定義したゲーム GHS

α (κ) とは異な
るゲームを定義する. 後述するが, 主定理に関係する長さが正則基数のときは二つのゲームは数学的
に同一のものであるため問題ない.

2.1Definition (フィルターゲーム). 正則基数 κ > ω と 順序数 α ∈ (0, κ+] に対して二人のプレイ
ヤーからなるゲーム Gα(κ) を定義する:

I B0 B1 B2 · · · Bω · · · Bβ · · ·
II u0 u1 u2 · · · uω · · · uβ · · · (β < α)

(a) 各 β < α ターン目において, プレイヤー I が先に Bβ をプレイし, 次にプレイヤー II が uβ

をプレイする. そうして次のターンに移行する.

(b) プレイヤー I の手 Bβ は κ 上の濃度が κ の κ-加法族である.

(c) uβ は Bβ 上の非自明な超フィルターである.

*3 これも ZFCの定理である. 選択公理がない状況では P (ω) 上の非自明な超フィルターが存在しない場合が起こりうる.



(d) γ ≤ β < α のとき, Bγ ⊆ Bβ かつ uγ ⊆ uβ .

両プレイヤーが全ての α ステップでプレイし終えたとき, このゲームの勝利条件を次のように定め
る: 全ての β < α で uβ が Bβ 上の < κ-完備超フィルターであるとき, プレイヤー II が勝利し, そ
うでなければプレイヤー I が勝利するものとする.

2.2Definition. 正則基数 κ > ω と α ∈ (0, κ+] に対して, プレイヤー II が Gα(κ) において必勝戦
略を持つことを W(κ, α) で, プレイヤー I が Gα(κ) において必勝戦略をもたないことを NW(κ, α)

で表す.

これらの性質は先に述べた可測基数と弱コンパクト基数の間に階層を成す:

2.3 Lemma. 正則基数 κ > ω に対して, 次が成り立つ:

1. κ が可測基数ならば W(κ, κ+).

2. κ が弱コンパクトであることと NW(κ, 1) は同値である.

W 及び NW に関する問題として次の疑問は自然なものである:

2.4Question. 正則基数 κ > ω と α ∈ (0, κ+]に対して, Gα(κ)は決定的か？すなわち,「NW(κ, α)

ならば W(κ, α)」は成り立つか？

この問題は Holy-Schlicht が自身が定義した別のゲーム GHS
α (κ) に対して提起したものだが, 次の

Lemma から上の形で問題がない:

2.5 Lemma. κ, λ ≤ κ+ を非可算正則基数とする.

1. Gα(κ) においてプレイヤー I が必勝戦略を持つことと GHS
α (κ) においてプレイヤー I が必勝

戦略を持つことは同値である.

2. Gα(κ) においてプレイヤー I が必勝戦略を持つことと GHS
α (κ) においてプレイヤー II が必

勝戦略を持つことは同値である.

この問題については以下のような部分的な解決が挙げられている:

2.6 Fact (Holy-Schlicht[1],Nielsen-Welch[4]).

1. α ∈ (ω, κ] について Gα(κ) の決定性は証明できない.

2. |P (κ)| = κ+ ならば, Gκ+(κ) は決定的である.

この Fact はゲームの長さが最大の κ+ であるときのゲームの決定性問題が完全な解決に至ってい
ないことを示している.



3 主定理
3.1Theorem.

(I) Gκ+(κ) は (|P (κ)| = κ+ の仮定がなければ) 証明できない.

(II) 正則基数 λ ≤ κ について, 「Gλ(κ) が決定的ならば Gλ+(κ) も決定的である」は証明でき
ない.
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